摘要
本发明属于有机合成技术领域,具体公开了一种高纯度乙交酯的合成方法,包括如下步骤:
将乙醇酸或乙醇酸酯在催化剂作用下加热脱水或脱醇得到乙醇酸低聚物,然后在解聚釜内升温减压裂解得到粗乙交酯;粗乙交酯在高真空下进行精馏,精馏产品用熔融结晶分离得到纯度≥99.9%的聚合级乙交酯。本发明的合成方法使用精馏和熔融结晶耦合的方法纯化粗乙交酯,不用添加任何试剂,物料可实现循环利用,能高收率得到高品质的乙交酯产品。本发明是一种高效、环保、高纯度乙交酯合成方法,适合于工业化生产。
权利要求书
1.一种高纯度乙交酯的合成方法,其特征在于,包括如下步骤:将乙醇酸或乙醇酸酯在催化剂作用下加热脱水或脱醇得到乙醇酸低聚物,然后在解聚釜内升温减压裂解得到粗乙 交酯;粗乙交酯在高真空下进行精馏,精馏产品用熔融结晶分离得到纯度≥99.9%的聚合级乙交酯。
2.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述乙醇酸酯选自乙 醇酸酯甲酯、乙醇酸酯乙酯、乙醇酸酯丙酯、乙醇酸酯丁酯中的至少一种;和/或,所述催化剂选自锡类化合物、氧化锑、锌的化合物中的至少一种。
3.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述催化剂的用量为 乙醇酸或乙醇酸酯重量的0.005‑0.1%。
4.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述脱水或脱醇反应 的温度为常温~200℃,反应压力为1~5KPa;
和/或,待完全无水或无醇蒸出后,完成脱水或脱醇反应,得到乙醇酸低聚物;
和/或,所述脱水或脱醇反应在保护气体保护下进行。
5.根据权利要求4所述的高纯度乙交酯的合成方法,其特征在于:乙醇酸或乙醇酸酯加 入反应釜中后,从常温梯度升温至200℃,进行脱水或脱醇反应。
6.根据权利要求5所述的高纯度乙交酯的合成方法,其特征在于:采用的原料乙醇酸为乙醇酸晶体,先将乙醇酸晶体加入反应釜中,先在常压条件下从常温梯度升温至90℃,使乙醇酸晶体熔化,再加入催化剂,然后抽真空使反应釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应;采用的原料乙醇酸酯为液体,将乙醇酸酯液体和催化剂加入反应釜中,在常压条件下从常温梯度升温至180℃,然后抽真空使反应釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应。
7.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述解聚釜内反应温 度为200~260℃,反应压力为500~1000Pa;
和/或,所述精馏温度为100‑160℃,压力≤500Pa。
8.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述精馏产品采用熔 融结晶纯化处理。
9.根据权利要求8所述的高纯度乙交酯的合成方法,其特征在于:所述熔融结晶操作包 括挂膜、冷却结晶、升温发汗、收集产品和排放母液,将乙交酯加热到85‑90℃进行熔化,其 次以0.1‑0.5℃/min进行降温结晶,控制降温温差在15‑30℃;然后以0.1‑0.5℃/min进行升 温发汗,控制升温温差为5‑20℃,排除发汗液;最后升温熔化收集乙交酯产品。
10.根据权利要求1所述的高纯度乙交酯的合成方法,其特征在于:所述解聚釜釜残物 套用至下一批裂解反应中;
和/或,所述精馏前馏分、釜残和熔融结晶母液套用至下一批制备粗乙交酯反应中。
说明书
技术领域
[0001] 本发明涉及有机合成领域,特别是涉及一种高纯度乙交酯的合成方法。
背景技术
[0002] 可弃置性/一次性石油基塑料(如:包装材料、农用薄膜、食用保鲜膜、一次性餐盒等)不加控制的生产和使用所造成的环境污染(白色污染)问题已引起全世界范围的严重关注。基于可再生资源的生物降解性聚合物,如:聚乳酸(PLA)、聚乙醇酸(PGA)、聚乳酸-乙醇酸(PLGA),已被国内外学者公认为是石油基塑料最有前景的替代物。聚乙醇酸(PGA)作为一种医用的可吸收高分子材料,由于其良好的生物降解性和生物相容性,在临床和医学领域有着重要的应用。早在上世纪30年代,Corothers就合成过聚乙醇酸,但得到的聚合物由于分子量较低,机械性能很差,作为强度材料实用性不高。70年代起,大量的聚乙醇酸用于可吸收缝合线的制备。1962年,美国的Cyanamid公司开发了第一个商品化的手术缝合线,商品名为“Dexon”。1975年,乙醇酸与乳酸以90:10的摩尔比共聚制备的商品名为“Vicryl”可吸收缝合线问世,由于乳酸的加入,使得聚合物的降解速率有了明显的提高。在这以后,医用 可生物降解材料的合成得到了更加广泛的研究,各类乙醇酸共聚物在可吸收缝合材料、组织修复材料、基因工程、骨科固定及药物控制释放体系都得到了重要的应用。目前,聚乙醇酸的主要合成方法有两种:直接缩聚和开环聚合法。开环聚合法也称两步法,即首先通过乙醇酸脱水、解聚制得乙交酯,然后乙交酯在催化剂的作用下,通过开环聚合反应制备聚乙醇酸。相对于直接缩聚法,开环聚合法的反应条件比较温和,反应时间短,可受控合成分子量达到几十万的聚乙醇酸产品,是商品化聚乙醇酸的主要制备方法。但是,对单体乙交酯的纯 度与品质要求极高。
[0003] 乙交酯的制备方法是将反应原料乙醇酸在自催化的条件下形成低聚物。低聚物在催化剂的作用下,解聚形成粗品乙交酯。粗乙交酯采用重结晶法、精馏法、熔融结晶法、水洗 法等方法进行纯化得到聚合级乙交酯。
[0004] (1)重结晶法
[0005] 重结晶法是利用在不同温度下不同物质在同一溶剂中的溶解度不同进行分离提 纯的一种方法。Kang等 (Kang Lin ,Newark Del ,Glycolide purificatin process , US5223630)将乙交酯先与丙酮等主要溶剂混合搅拌,后续在低温条件下于乙酸乙酯中进行 重结晶,精品乙交酯得率为85%及以上。山根和行等(山根和行, 川上进盟,元星,环状酯的 制备方法以及精制方法,CN100441575C)将乙交酯溶解在低级酯类或低级醇类与低级酮类 两种溶剂组成的混合液中,添加甲醇、乙醚、二氯甲烷等低沸点溶剂的一种或几种,可以促 进乙交酯晶核在过饱和溶液中形成。张先正等(张先正,李仕颖,冯俊,一种乙交酯的制备方法,CN103242287B)将粗品乙交酯溶解于低级酯或低级醇类的一种或几种溶液中,重复重结 晶进行纯化。该类方法通常采用有机溶剂,且难以实现连续化操作,故难以在商品化乙交酯 生产中应用。
[0006] (2)精馏法
[0007] 精馏法是利用粗产品中各组分的沸点差异性,进行分离提纯的一种工艺方法。山根和行等(山根和行,星智广,小川知幸,环状酯的精制方法,CN101616907B)将乙交酯与具 有230‑450℃的沸点和150‑450分子量的聚烷二醇醚混合物在常压或减压下加热,形成实质 均匀相的溶液状态,从而使乙交酯馏分在适宜温度下收集。
[0008] 精馏法是目前商品化乙交酯生产中所常用的方法之一,但该方法的问题在于工艺 复杂、能耗大。此外,由于粗品乙交酯中通常含有酸性杂质,在精馏提纯过程中会造成乙交 醋发生聚合反应,同样会形成聚合物残渣。
[0009] (3)熔融结晶法
[0010] 熔融结晶法是利用粗产品中各组分的熔点差异性,进行分离提纯的一种方法。由于乙交酯熔点为84‑86℃,可以使反应在常压、低温下进行,操作简单安全。与使用溶剂的重 结晶法相比,不需要使用额外的溶剂,减少了成本和环境污染,同时它的能耗也仅为精馏的 1/3。但是粗乙交酯中含有的酸性杂质(乙醇酸、低聚物)对设备材质要求较高,同时还降低了结晶效率。
[0011] (4)水洗法
[0012] 水洗法是利用粗产品中各物质在水中的溶解性差异,进行分离提纯的方法。乙交 酯粗品中有少量乙醇酸、乙醇酸低聚物和水,由于酸类物质在水中的溶解度大大高于乙交 酯在水中的溶解度,所以乙交酯可以得到很好地分离。乙交酯中存在水分也会导致它的聚 合或降解,所以及时地干燥是水洗法提纯乙交酯的关键。水洗法不需要使用有机溶剂,同时 设备条件要求不高,相对更加节能和绿色,但是不同品质的乙交酯水洗情况不尽相同,后续 的干燥工艺也有严格要求,目前科研和工业上都很少有成功应用。
发明内容
[0013] 鉴于以上所述现有技术的缺点,本发明的目的在于提供一种高纯度乙交酯的合成 方法, 用于解决现有技术中乙交酯的合成成本较高、生产效率低、能耗高、三废量大、不便于 工业化等问题。
[0014] 为实现上述目的及其他相关目的,本发明提供一种高纯度乙交酯的合成方法,包 括如下步骤:将乙醇酸或乙醇酸酯在催化剂作用下加热脱水或脱醇得到乙醇酸低聚物,然 后在解聚釜内升温减压裂解得到粗乙交酯;粗乙交酯在高真空下进行精馏,精馏产品用熔 融结晶分离得到纯度≥99.9%的聚合级乙交酯。
[0015] 进一步,所述乙醇酸酯选自乙醇酸酯甲酯、乙醇酸酯乙酯、乙醇酸酯丙酯、乙醇酸 酯丁酯中的至少一种。
[0016] 进一步,所述催化剂选自锡类化合物、氧化锑、锌的化合物中的至少一种。
[0017] 可选地,所述锡类化合物选自氯化亚锡、辛酸亚锡、二水合氯化亚锡、乳酸锡、苯甲 酸亚锡中的至少一种,所述锌的化合物选自氯化锌、氧化锌、二乙基锌、二水合乙酸锌、乳酸 锌中的至少一种。
[0018] 进一步,所述催化剂的用量为乙醇酸或乙醇酸酯重量的0.005 ‑0.1%。
[0019] 进一步,所述脱水或脱醇反应的温度为常温~200℃,反应压力为1~5KPa。
[0020] 可选地,乙醇酸或乙醇酸酯加入反应釜中后,从常温梯度升温至200℃,进行脱水或脱醇反应。优选地,采用的原料乙醇酸为乙醇酸晶体,先将乙醇酸晶体加入反应釜中,先在常压条件下从常温梯度升温至90℃,使乙醇酸晶体熔化,再加入催化剂,然后抽真空使反应釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应;采用的原料乙醇酸酯 为液体,将乙醇酸酯液体和催化剂加入反应釜中,在常压条件下从常温梯度升温至180℃, 然后抽真空使反应釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应。
[0021] 进一步,待完全无水或无醇蒸出后,完成脱水或脱醇反应,得到乙醇酸低聚物。
[0022] 进一步,所述脱水或脱醇反应在保护气体保护下进行。
[0023] 进一步,所述解聚釜内反应温度为200~260℃,反应压力为500~1000Pa。
[0024] 进一步,所述精馏温度为100‑160℃,压力≤500Pa。
[0025] 进一步,所述精馏产品采用熔融结晶纯化处理。
[0026] 进一步,所述熔融结晶操作包括挂膜、冷却结晶、升温发汗、收集产品和排放母液,将乙交酯加热到85‑90℃进行熔化,其次以0.1‑0.5℃/min进行降温结晶,控制降温温差在15‑30℃;然后以0 .1 ‑0 .5℃/min进行升温发汗,控制升温温差为5‑20℃,排除发汗液;最后 升温熔化收集乙交酯产品。
[0027] 进一步,所述解聚釜釜残物套用至下一批裂解反应中。
[0028] 进一步,所述精馏前馏分、釜残和熔融结晶母液套用至下一批制备粗乙交酯反应中。
[0029] 本发明中,所述保护气体是本领域常用的保护气体中的至少一种,如氮气、氩气、氦气等。
[0030] 如上所述,本发明的高纯度乙交酯的合成方法,具有以下有益效果:
[0031] 本发明的合成方法使用精馏和熔融结晶耦合的方法纯化粗乙交酯,不用添加任何 试剂或溶剂,能高收率得到高品质(纯度≥99.9%)的乙交酯产品,且通过母液套用实现了 物料的循环利用。本发明是一种高效、环保、高纯度乙交酯合成方法,适合于工业化生产。
具体实施方式
[0032] 以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书 所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实 施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离 本发明的精神下进行各种修饰或改变。
[0033] 本发明提供了一种高纯度乙交酯的合成方法,包括如下步骤:将乙醇酸或乙醇酸 酯在催化剂作用下加热脱水或脱醇得到乙醇酸低聚物,然后在解聚釜内升温减压裂解得到 粗乙交酯粗乙交酯在高真空下进行精馏,精馏产品用熔融结晶分离得到纯度≥99.9%的聚 合级乙交酯。
[0034] 进一步地,所述乙醇酸酯选自乙醇酸酯甲酯、乙醇酸酯乙酯、乙醇酸酯丙酯、乙醇 酸酯丁酯中的至少一种。
[0035] 进一步地,所述催化剂选自锡类化合物、氧化锑、锌的化合物中的至少一种;具体 地,所述锡类化合物选自氯化亚锡、辛酸亚锡、二水合氯化亚锡、乳酸锡、苯甲酸亚锡中的至 少一种,所述锌的化合物选自氯化锌、二乙基锌、二水合乙酸锌、乳酸锌中的至少一种。
[0036] 进一步地,所述催化剂的用量为乙醇酸或乙醇酸酯重量的0.005‑0.1%。
[0037] 进一步地,所述脱水或脱醇反应的温度为常温~200℃,反应压力为1~5KPa。
[0038] 具体地,乙醇酸或乙醇酸酯加入反应釜中后,从常温梯度升温至200℃,进行脱水或脱醇反应。更优选地,采用的原料乙醇酸为乙醇酸晶体,先将乙醇酸晶体加入反应釜中, 先在常压条件下从常温升温至90℃,使乙醇酸晶体熔化,再加入催化剂,然后抽真空使反应 釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应;采用的原料乙醇酸酯为 液体,将乙醇酸酯液体和催化剂加入反应釜中,在常压条件下从常温升温至180℃,然后抽 真空使反应釜压力降低至1~5KPa,并梯度升温至200℃,进行脱水或脱醇反应。
[0039] 进一步地,待完全无水或无醇蒸出后,完成脱水或脱醇反应,得到乙醇酸低聚物。
[0040] 进一步地,所述脱水或脱醇反应在保护气体保护下进行。
[0041] 进一步地,所述解聚釜内反应温度为200~260℃,反应压力为500~1000Pa。
[0042] 进一步地,所述精馏温度为100‑160℃,压力≤500Pa。
[0043] 进一步地,所述精馏产品采用熔融结晶纯化处理。具体地,熔融结晶操作包括挂膜、冷却结晶、升温发汗、收集产品和排放母液,将乙交酯加热到85‑90℃进行熔化,其次以 0.1‑0.5℃/min进行降温结晶,控制降温温差在15‑30℃;然后以0.1‑0.5℃/min进行升温发 汗,控制升温温差为5‑20℃,排除发汗液;最后升温熔化收集乙交酯产品。
[0044] 进一步地,所述解聚釜釜残物套用至下一批裂解反应中。
[0045] 进一步地,所述精馏前馏分、釜残和熔融结晶母液套用至下一批制备粗乙交酯反应中。
[0046] 需要注意的是,本发明中,所述保护气体是本领域常用的保护气体中的至少一种,如氮气、氩气、氦气等。
[0047] 下面通过具体的实施例来对本发明进行进一步说明。
[0048] 实施例1
[0049] 本实施例中高纯度乙交酯的合成方法包括如下步骤:
[0050] 向四口烧瓶中加入305g乙醇酸晶体,在氮气保护常压下升温至90℃,待固体完全熔化后加入0.03g氯化亚锡,然后开始抽真空降低体系压力至3KPa,梯度升温至200℃,待完 全无水蒸出后得到乙醇酸低聚物。调节体系压力为500Pa,在温度为200‑260℃之间进行裂 解反应,不断有淡黄色液体蒸出,冷却后为淡黄色固体,即得到粗乙交酯,收率为94%。
[0051] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至 500Pa;开始升温至150℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反应。将精馏产品通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产 品和排放母液等,具体过程为:将乙交酯加热到89℃进行熔化,其次以0.3℃/min进行降温 结晶,控制降温温差在20℃;然后以0.3℃/min进行升温发汗,控制升温温差为20℃,排除发 汗液;最后升温熔化收集乙交酯产品,母液套用至下一批反应。经两次精制后得到白色乙交 酯产品175.2g,纯度99.93%,纯化收率80%,总收率75.2%。
[0052] 实施例2
[0053] 粗乙交酯的制备同实施例1。
[0054] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至500Pa;开始升温至160℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反 应。将精馏产品通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产 品和排放母液等,具体过程为:将乙交酯加热到88℃进行熔化,其次以0.4℃/min进行降温结晶,控制降温温差在20℃;然后以0.4℃/min进行升温发汗,控制升温温差为10℃,排除发汗液;最后升温熔化收集乙交酯产品,母液套用至下一批反应。经两次精制后得到白色乙交 酯产品177.4g,纯度99.94%,纯化收率81%,总收率76.1%。
[0055] 实施例3
[0056] 粗乙交酯的制备同实施例1。
[0057] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至500Pa;开始升温至160℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反 应。将精馏产品通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产 品和排放母液等,具体过程为:将乙交酯加热到85℃进行熔化,其次以0.2℃/min进行降温 结晶,控制降温温差在25℃;然后以0.3℃/min进行升温发汗,控制升温温差为15℃,排除发 汗液;最后升温熔化收集乙交酯产品,母液套用至下一批反应。经两次精制后得到白色乙交 酯产品179.6g,纯度99.94%,纯化收率82%,总收率77.1%。
[0058] 实施例4
[0059] 本实施例中高纯度乙交酯的合成方法包括如下步骤:
[0060] 向四口烧瓶中加入305g乙醇酸晶体,在氮气保护常压下升温至90℃,带固体待固体完全熔化后加入0.03g辛酸亚锡,然后开始抽真空降低体系压力至5KPa,梯度升温至200℃,待完全无水蒸出后得到乙醇酸低聚物。调节体系压力为1000Pa ,在温度为200‑260℃之 间进行裂解反应,不断有淡黄色液体蒸出,冷却后为淡黄色固体,即得到了粗乙交酯,其收 率为94%。
[0061] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至 400Pa;开始升温至160℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反 应。将精馏产品通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产 品和排放母液等,具体过程为:将乙交酯加热到90℃进行熔化,其次以0.5℃/min进行降温 结晶,控制降温温差在30℃;然后以0.5℃/min进行升温发汗,控制升温温差为20℃,排除发 汗液;最后升温熔化收集乙交酯产品,母液套用至下一批反应。经两次纯化后得到白色乙交 酯产品180.7g,纯度99.95%,纯化收率82.5%,总收率77.6%。
[0062] 实施例5
[0063] 粗乙交酯的制备同实施例4。
[0064] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至500Pa;开始升温至160℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反 应。将精馏产品通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产 品和排放母液等,具体过程为:将乙交酯加热到89℃进行熔化,其次以0.1℃/min进行降温 结晶,控制降温温差在15℃;然后以0.1℃/min进行升温发汗,控制升温温差为5℃,排除发 汗液;最后升温熔化收集乙交酯产品,母液套用至下一批反应。经两次精制后得到白色乙交 酯产品180.2g,纯度99.96%,纯化收率82.3%,总收率77.4%。
[0065] 对比例1
[0066] 粗乙交酯的制备同实施例4。
[0067] 将粗乙交酯(219g)在氮气保护下加入精馏装置中,然后抽真空降低体系的压力至500Pa;开始升温至160℃,在此期间进行前馏分和产品的收集;前馏分和釜残套用至下批反应,精馏得到白色乙交酯产品192.7g,纯度99.25%,纯化收率88%,总收率82.7%。
[0068] 对比例2
[0069] 粗乙交酯的制备同实施例4。
[0070] 将粗乙交酯通过熔融结晶器进行提纯,主要操作包括挂膜、冷却结晶、升温发汗、收集产品和排放母液等;控制结晶温差15‑30℃,发汗升温5‑20℃,母液套用至下一批反应。 精制后得到白色乙交酯产品189.3g,纯度99.00%,纯化收率86.7%,总收率81.3%。
[0071] 实施例1‑5的乙交酯产品纯度≥99.9%,均高于对比例1‑2,由此可知,相较于重结 晶或熔融结晶单一方法纯化的产品,本发明使用精馏和熔融结晶耦合的方法纯化粗乙交 酯,能进一步提高产品的品质。
[0072] 上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟 悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因 此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完 成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
下一篇:一种高效合成乙交酯的系统及方法
上一篇:一种2-氨基丁酰胺的生产系统